Search results
Results From The WOW.Com Content Network
Shannon's definition of entropy, when applied to an information source, can determine the minimum channel capacity required to reliably transmit the source as encoded binary digits. Shannon's entropy measures the information contained in a message as opposed to the portion of the message that is determined (or predictable).
A misleading [1] information diagram showing additive and subtractive relationships among Shannon's basic quantities of information for correlated variables and .The area contained by both circles is the joint entropy (,).
The shannon also serves as a unit of the information entropy of an event, which is defined as the expected value of the information content of the event (i.e., the probability-weighted average of the information content of all potential events). Given a number of possible outcomes, unlike information content, the entropy has an upper bound ...
The physical entropy may be on a "per quantity" basis (h) which is called "intensive" entropy instead of the usual total entropy which is called "extensive" entropy. The "shannons" of a message ( Η ) are its total "extensive" information entropy and is h times the number of bits in the message.
Information-theoretic analysis of communication systems that incorporate feedback is more complicated and challenging than without feedback. Possibly, this was the reason C.E. Shannon chose feedback as the subject of the first Shannon Lecture, delivered at the 1973 IEEE International Symposium on Information Theory in Ashkelon, Israel.
Here, is the "disorder" capacity of the system, which is the entropy of the parts contained in the permitted ensemble, is the "information" capacity of the system, an expression similar to Shannon's channel capacity, and is the "order" capacity of the system.
The Shannon information is closely related to entropy, which is the expected value of the self-information of a random variable, quantifying how surprising the random variable is "on average". This is the average amount of self-information an observer would expect to gain about a random variable when measuring it.
Other information-theoretic measures such as conditional information, mutual information, or total correlation can be expressed in terms of joint entropy and are thus related by the corresponding inequalities. Many inequalities satisfied by entropic vectors can be derived as linear combinations of a few basic ones, called Shannon-type inequalities.