Search results
Results From The WOW.Com Content Network
ParserFunctions allow for the conditional display of table rows, columns or cells (and really, just about anything else). But Parser functions have some limits. But Parser functions have some limits. Basic use
Row labels are used to apply a filter to one or more rows that have to be shown in the pivot table. For instance, if the "Salesperson" field is dragged on this area then the other output table constructed will have values from the column "Salesperson", i.e., one will have a number of rows equal to the number of "Sales Person". There will also ...
The correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case, the correlation coefficient is undefined because the variance of Y is zero.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
In data mining and association rule learning, lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.
Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. [1]
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.
In an EAV data model, each attribute–value pair is a fact describing an entity, and a row in an EAV table stores a single fact. EAV tables are often described as "long and skinny": "long" refers to the number of rows, "skinny" to the few columns. Data is recorded as three columns: The entity: the item being described.