When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .

  3. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  4. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

  5. Newton–Gauss line - Wikipedia

    en.wikipedia.org/wiki/Newton–Gauss_line

    In geometry, the Newton–Gauss line (or Gauss–Newton line) is the line joining the midpoints of the three diagonals of a complete quadrilateral.. The midpoints of the two diagonals of a convex quadrilateral with at most two parallel sides are distinct and thus determine a line, the Newton line.

  6. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.

  7. Missing square puzzle - Wikipedia

    en.wikipedia.org/wiki/Missing_square_puzzle

    The apparent paradox is explained by the fact that the side of the new large square is a little smaller than the original one. If θ is the angle between two opposing sides in each quadrilateral, then the ratio of the two areas is given by sec 2 θ. For θ = 5°, this is approximately 1.00765, which corresponds to a difference of about 0.8%.

  8. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    A quadrilateral is a square if and only if it is any one of the following: [2] [3] A rectangle with two adjacent equal sides; A rhombus with a right vertex angle; A rhombus with all angles equal; A parallelogram with one right vertex angle and two adjacent equal sides; A quadrilateral with four equal sides and four right angles

  9. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A Watt quadrilateral is a quadrilateral with a pair of opposite sides of equal length. [6] A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8]