Ad
related to: how much increase virtual memory
Search results
Results From The WOW.Com Content Network
Virtual memory is an integral part of a modern computer architecture; implementations usually require hardware support, typically in the form of a memory management unit built into the CPU. While not necessary, emulators and virtual machines can employ hardware support to increase performance of their virtual memory implementations. [6]
If four virtual machines each have 1 GB of memory on a physical machine with 4 GB of memory, but those virtual machines are only using 500 MB, it is possible to create additional virtual machines that take advantage of the 500 MB each existing machine is leaving free. [1] Memory swapping is then used to
A 68451 MMU, which could be used with the Motorola 68010. A memory management unit (MMU), sometimes called paged memory management unit (PMMU), [1] is a computer hardware unit that examines all memory references on the memory bus, translating these requests, known as virtual memory addresses, into physical addresses in main memory.
By reducing the I/O activity caused by paging requests, virtual memory compression can produce overall performance improvements. The degree of performance improvement depends on a variety of factors, including the availability of any compression co-processors, spare bandwidth on the CPU, speed of the I/O channel, speed of the physical memory, and the compressibility of the physical memory ...
Thrashing is when the CPU performs 'productive' work less and 'swapping' work more. The overall memory access time may increase since the higher level memory is only as fast as the next lower level in the memory hierarchy. [2] The CPU is busy swapping pages so much that it cannot respond to users' programs and interrupts as much as required.
Memory virtualization technology follows from memory management architectures and virtual memory techniques. In both fields, the path of innovation has moved from tightly coupled relationships between logical and physical resources to more flexible, abstracted relationships where physical resources are allocated as needed.
A modern computer operating system usually uses virtual memory to provide separate address spaces or separate regions of a single address space, called user space and kernel space. [1] [a] Primarily, this separation serves to provide memory protection and hardware protection from malicious or errant software behaviour.
This means that 48 bits of virtual page number are translated, giving a virtual address space of up to 256 TB. For some processors, a mode can be enabled with a fifth table, the 512-entry page-map level 5 table ; this means that 57 bits of virtual page number are translated, giving a virtual address space of up to 128 PB.