When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neutron number - Wikipedia

    en.wikipedia.org/wiki/Neutron_number

    The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z. Neutron number is not written explicitly in nuclide symbol notation, but ...

  3. Mirror nuclei - Wikipedia

    en.wikipedia.org/wiki/Mirror_nuclei

    In physics, mirror nuclei are a pair of isobars of two different elements where the number of protons of isobar one (Z 1) equals the number of neutrons of isobar two (N 2) and the number of protons of isotope two (Z 2) equals the number of neutrons in isotope one (N 1); in short: Z 1 = N 2 and Z 2 = N 1.

  4. Magic number (physics) - Wikipedia

    en.wikipedia.org/wiki/Magic_number_(physics)

    Calcium-48 is very neutron-rich for such a relatively light element, but like calcium-40, it is stabilized by being doubly magic. As an exception, although oxygen-28 has 8 protons and 20 neutrons, it is unbound with respect to four-neutron decay and appears to lack closed neutron shells, so it is not regarded as doubly magic. [14]

  5. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The number of neutrons is the neutron number. Neutrons do not affect the electron configuration. Atoms of a chemical element that differ only in neutron number are called isotopes. For example, carbon, with atomic number 6, has an abundant isotope carbon-12 with 6 neutrons and a rare isotope carbon-13 with 7 neutrons.

  6. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.

  7. Nuclide - Wikipedia

    en.wikipedia.org/wiki/Nuclide

    As the number of protons increases, so does the ratio of neutrons to protons necessary to ensure a stable nucleus (see graph). For example, although the neutron–proton ratio of 3 2 He is 1:2, the neutron–proton ratio of 238 92 U is greater than 3:2. A number of lighter elements have stable nuclides with the ratio 1:1 (Z = N). The nuclide 40 ...

  8. Neutron–proton ratio - Wikipedia

    en.wikipedia.org/wiki/Neutron–proton_ratio

    For many elements with atomic number Z small enough to occupy only the first three nuclear shells, that is up to that of calcium (Z = 20), there exists a stable isotope with N/Z ratio of one. The exceptions are beryllium ( N / Z = 1.25) and every element with odd atomic number between 9 and 19 inclusive (though in those cases N = Z + 1 always ...

  9. Mass number - Wikipedia

    en.wikipedia.org/wiki/Mass_number

    The mass number is different for each isotope of a given chemical element, and the difference between the mass number and the atomic number Z gives the number of neutrons (N) in the nucleus: N = A − Z. [2] The mass number is written either after the element name or as a superscript to the left of an element's symbol.