Search results
Results From The WOW.Com Content Network
A googol is the large number 10 100 or ten to the power of one hundred. In decimal notation, it is written as the digit 1 followed by one hundred zeros: 10, 000, 000 ...
40 is an abundant number.. Swiss mathematician Leonhard Euler noted 40 prime numbers generated by the quadratic polynomial + +, with values =,,,...,.These forty prime numbers are the same prime numbers that are generated using the polynomial + with values of from 1 through 40, and are also known in this context as Euler's "lucky" numbers.
This is a description of what would happen if one tried to write a googolplex, but different people get tired at different times and it would never do to have Carnera a better mathematician than Dr. Einstein, simply because he had more endurance. The googolplex is, then, a specific finite number, equal to 1 with a googol zeros after it.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
In such a context, "simplifying" a number by removing trailing zeros would be incorrect. The number of trailing zeros in a non-zero base-b integer n equals the exponent of the highest power of b that divides n. For example, 14000 has three trailing zeros and is therefore divisible by 1000 = 10 3, but not by 10 4.
Leading and trailing zeroes are not significant digits, because they exist only to show the scale of the number. Unfortunately, this leads to ambiguity. The number 1 230 400 is usually read to have five significant figures: 1, 2, 3, 0, and 4, the final two zeroes serving only as placeholders and adding no precision. The same number, however ...
1/52! chance of a specific shuffle Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24 × 10 −68 (or exactly 1 ⁄ 52!) [4] Computing: The number 1.4 × 10 −45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.