Ad
related to: stellar evolution diagram
Search results
Results From The WOW.Com Content Network
Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the ...
Theoretical calculations of stellar structure and the evolution of stars produce plots that match those from observations. This type of diagram could be called temperature-luminosity diagram, but this term is hardly ever used; when the distinction is made, this form is called the theoretical Hertzsprung–Russell diagram instead. A peculiar ...
In the field of stellar evolution, a blue loop is a stage in the life of an evolved star where it changes from a cool star to a hotter one before cooling again. The name derives from the shape of the evolutionary track on a Hertzsprung–Russell diagram which forms a loop towards the blue (i.e. hotter) side of the diagram, to a place called the ...
The diagram at the top of this article shows numerically computed stellar evolution tracks for various masses. The vertical portions of each track is the Hayashi track. The endpoints of each track lie on the main sequence. The horizontal segments for higher-mass stars show the Henyey track.
The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) and by hydrogen fusion (via the CNO cycle) in a shell surrounding the core.
Diagram of stellar evolution, showing the various stages of stars with different masses. A black dwarf is a theoretical stellar remnant, specifically a white dwarf that has cooled sufficiently to no longer emit significant heat or light.
In stellar evolution, an isochrone is a curve on the Hertzsprung-Russell diagram, representing a population of stars of the same age but with different mass. [1] The Hertzsprung-Russell diagram plots a star's luminosity against its temperature, or equivalently, its color. Stars change their positions on the HR diagram throughout their life.
Other factors that broaden the main sequence band on the HR diagram include uncertainty in the distance to stars and the presence of unresolved binary stars that can alter the observed stellar parameters. However, even perfect observation would show a fuzzy main sequence because mass is not the only parameter that affects a star's color and ...