When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fubini–Study metric - Wikipedia

    en.wikipedia.org/wiki/Fubini–Study_metric

    where {,} is an orthonormal basis of the 2-plane σ, the mapping J : TCP n → TCP n is the complex structure on CP n, and , is the Fubini–Study metric. A consequence of this formula is that the sectional curvature satisfies 1 ≤ K ( σ ) ≤ 4 {\displaystyle 1\leq K(\sigma )\leq 4} for all 2-planes σ {\displaystyle \sigma } .

  3. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    Consider the real Euclidean n-dimensional space, that is R n = R × R × ... × R (n times) where R is the set of real numbers and × denotes the Cartesian product, which is a vector space. The coordinates of this space can be denoted by: x = (x 1, x 2,...,x n). Since this is a vector (an element of the vector space), it can be written as:

  4. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    z-y′-x″ sequence (intrinsic rotations; N coincides with y’). The angle rotation sequence is ψ, θ, φ. Note that in this case ψ > 90° and θ is a negative angle. Similarly for Euler angles, we use the Tait Bryan angles (in terms of flight dynamics): Heading – : rotation about the Z-axis

  5. For the 2-D DHWT, it is seen that these linear combinations correspond to the exact 2-D dual tree CWT case. For 3-D, the DHWT can be considered in two dimensions, one DHWT for n = 1 and another for n = 2. For n = 2, n = m-1, so, as in the 2-D case, this corresponds to 3-D dual tree CWT. But the case of n = 1 gives rise to a new DHWT transform ...

  6. Helmert transformation - Wikipedia

    en.wikipedia.org/wiki/Helmert_transformation

    Helmert transformation. The transformation from a reference frame 1 to a reference frame 2 can be described with three translations Δx, Δy, Δz, three rotations Rx, Ry, Rz and a scale parameter μ. The Helmert transformation (named after Friedrich Robert Helmert, 1843–1917) is a geometric transformation method within a three-dimensional space.

  7. Z-order curve - Wikipedia

    en.wikipedia.org/wiki/Z-order_curve

    The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [4] [5] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [6] or they can be used to build a pointer based quadtree.

  8. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    Nonlinear dimensionality reduction. Top-left: a 3D dataset of 1000 points in a spiraling band (a.k.a. the Swiss roll) with a rectangular hole in the middle. Top-right: the original 2D manifold used to generate the 3D dataset. Bottom left and right: 2D recoveries of the manifold respectively using the LLE and Hessian LLE algorithms as ...

  9. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix: