When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    The properties involving multiplication, division, and exponentiation generally require that a and n are integers. Identity: (a mod n) mod n = a mod n. nx mod n = 0 for all positive integer values of x. If p is a prime number which is not a divisor of b, then abp−1 mod p = a mod p, due to Fermat's little theorem.

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  4. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    It was introduced in 1985 by the American mathematician Peter L. Montgomery. [1][2] Montgomery modular multiplication relies on a special representation of numbers called Montgomery form. The algorithm uses the Montgomery forms of a and b to efficiently compute the Montgomery form of ab mod N.

  5. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    Lamé parameters. In continuum mechanics, Lamé parameters (also called the Lamé coefficients, Lamé constants or Lamé moduli) are two material-dependent quantities denoted by λ and μ that arise in strain - stress relationships. [1] In general, λ and μ are individually referred to as Lamé's first parameter and Lamé's second parameter ...

  6. Modulus and characteristic of convexity - Wikipedia

    en.wikipedia.org/wiki/Modulus_and_characteristic...

    In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex " the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε - δ definition of uniform convexity as the modulus of continuity does to the ε - δ definition of continuity.

  7. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = be mod m = d−e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.

  8. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The absolute value of a number may be thought of as its distance from zero. In mathematics, the absolute value or modulus of a real number , denoted , is the non-negative value of without regard to its sign. Namely, if is a positive number, and if is negative (in which case negating makes positive), and . For example, the absolute value of 3 is ...

  9. Modulus (algebraic number theory) - Wikipedia

    en.wikipedia.org/wiki/Modulus_(algebraic_number...

    Modulus (algebraic number theory) In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle, [1] or extended ideal[2]) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.