Ad
related to: matlab matrix size in online learning system challenger x
Search results
Results From The WOW.Com Content Network
MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms , creation of user interfaces , and interfacing with programs written in other languages.
Approximate non-negative matrix factorization. Usually the number of columns of W and the number of rows of H in NMF are selected so the product WH will become an approximation to V. The full decomposition of V then amounts to the two non-negative matrices W and H as well as a residual U, such that: V = WH + U.
List of datasets in computer vision and image processing. Outline of machine learning. v. t. e. These datasets are used in machine learning (ML) research and have been cited in peer-reviewed academic journals. Datasets are an integral part of the field of machine learning. Major advances in this field can result from advances in learning ...
Matrix regularization. In the field of statistical learning theory, matrix regularization generalizes notions of vector regularization to cases where the object to be learned is a matrix. The purpose of regularization is to enforce conditions, for example sparsity or smoothness, that can produce stable predictive functions.
Multi-task learning (MTL) is a subfield of machine learning in which multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models, when compared to training the models separately.
Sylvester equation. In mathematics, in the field of control theory, a Sylvester equation is a matrix equation of the form: [1] It is named after English mathematician James Joseph Sylvester. Then given matrices A, B, and C, the problem is to find the possible matrices X that obey this equation. All matrices are assumed to have coefficients in ...
Vectorization (mathematics) In mathematics, especially in linear algebra and matrix theory, the vectorization of a matrix is a linear transformation which converts the matrix into a vector. Specifically, the vectorization of a m × n matrix A, denoted vec (A), is the mn × 1 column vector obtained by stacking the columns of the matrix A on top ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]