When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other.

  3. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    Nuclear physics. In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or ...

  4. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Equations. Mass number. A = (Relative) atomic mass = Mass number = Sum of protons and neutrons. N = Number of neutrons. Z = Atomic number = Number of protons = Number of electrons. A = Z + N {\displaystyle A=Z+N\,\!} Mass in nuclei. M'nuc = Mass of nucleus, bound nucleons. MΣ = Sum of masses for isolated nucleons.

  5. Nuclear force - Wikipedia

    en.wikipedia.org/wiki/Nuclear_force

    Comparison between the Nuclear Force and the Coulomb Force. a – residual strong force (nuclear force), rapidly decreases to insignificance at distances beyond about 2.5 fm, b – at distances less than ~ 0.7 fm between nucleons centres the nuclear force becomes repulsive, c – coulomb repulsion force between two protons (over 3 fm, force becomes the main), d – equilibrium position for ...

  6. Beta decay - Wikipedia

    en.wikipedia.org/wiki/Beta_decay

    t. e. In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or ...

  7. Nuclear transmutation - Wikipedia

    en.wikipedia.org/wiki/Nuclear_transmutation

    Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. [1] Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed. A transmutation can be achieved either by nuclear reactions (in which an outside particle reacts with a nucleus ...

  8. Nuclear reactor physics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor_physics

    Nuclear reactor physics. Pressurized water reactor: Projective representation of the thermal neutron flux of a fuel assembly of the 18×18 array with 300 fuel rods and 24 inserted control rods. Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a ...

  9. Zeeman effect - Wikipedia

    en.wikipedia.org/wiki/Zeeman_effect

    The Zeeman effect (/ ˈzeɪmən / ZAY-mən, Dutch: [ˈzeːmɑn]) is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel prize for this discovery. It is analogous to the Stark effect, the ...