When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    The disk-shaped cross-sectional area of the sphere is equal to the ring-shaped cross-sectional area of the cylinder part that lies outside the cone. If one knows that the volume of a cone is (), then one can use Cavalieri's principle to derive the fact that the volume of a sphere is , where is the radius.

  3. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    A double cone (not shown infinitely extended) 3D model of a cone. A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the apex, to all of ...

  4. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    Frustum. In geometry, a frustum (Latin for 'morsel'); [a] (pl.: frusta or frustums) is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting the solid. In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal. A right frustum is a right pyramid or a right cone ...

  5. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap. It is the three-dimensional analogue of ...

  6. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    The condition of balance ensures that the volume of the cone plus the volume of the sphere is equal to the volume of the cylinder. The volume of the cylinder is the cross section area, times the height, which is 2, or . Archimedes could also find the volume of the cone using the mechanical method, since, in modern terms, the integral involved ...

  7. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...

  8. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    Convex cone. Mathematical set closed under positive linear combinations. A convex cone (light blue). Inside of it, the light red convex cone consists of all points αx + βy with α, β > 0, for the depicted x and y. The curves on the upper right symbolize that the regions are infinite in extent. In linear algebra, a cone —sometimes called a ...

  9. Conic optimization - Wikipedia

    en.wikipedia.org/wiki/Conic_optimization

    Conic optimization is a subfield of convex optimization that studies problems consisting of minimizing a convex function over the intersection of an affine subspace and a convex cone. The class of conic optimization problems includes some of the most well known classes of convex optimization problems, namely linear and semidefinite programming.