When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Symmetric probability distribution - Wikipedia

    en.wikipedia.org/wiki/Symmetric_probability...

    Thus, a d-variate distribution is defined to be mirror symmetric when its chiral index is null. The distribution can be discrete or continuous, and the existence of a density is not required, but the inertia must be finite and non null. In the univariate case, this index was proposed as a non parametric test of symmetry. [2]

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.

  4. Dirichlet distribution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_distribution

    A common special case is the symmetric Dirichlet distribution, where all of the elements making up the parameter vector have the same value. The symmetric case might be useful, for example, when a Dirichlet prior over components is called for, but there is no prior knowledge favoring one component over another.

  5. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    If we use instead of the normal distribution, e.g., the Irwin–Hall distribution, we obtain over-all a symmetric 4 parameter distribution, which includes the normal, the uniform, the triangular, the Student t and the Cauchy distribution. This is also more flexible than some other symmetric generalizations of the normal distribution.

  6. Elliptical distribution - Wikipedia

    en.wikipedia.org/wiki/Elliptical_distribution

    In statistics, the normal distribution is used in classical multivariate analysis, while elliptical distributions are used in generalized multivariate analysis, for the study of symmetric distributions with tails that are heavy, like the multivariate t-distribution, or light (in comparison with the normal distribution). Some statistical methods ...

  7. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  8. Generalized normal distribution - Wikipedia

    en.wikipedia.org/.../Generalized_normal_distribution

    The generalized normal distribution (GND) or generalized Gaussian distribution (GGD) is either of two families of parametric continuous probability distributions on the real line. Both families add a shape parameter to the normal distribution. To distinguish the two families, they are referred to below as "symmetric" and "asymmetric"; however ...

  9. Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Wishart_distribution

    The Wishart distribution can be characterized by its probability density function as follows: Let X be a p × p symmetric matrix of random variables that is positive semi-definite. Let V be a (fixed) symmetric positive definite matrix of size p × p.