When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    In mathematics, an ordered basis of a vector space of finite dimension n allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of n scalars called coordinates.

  3. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.

  4. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  5. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...

  6. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.

  7. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra. The outer product contrasts with: The dot product (a special case of " inner product "), which takes a pair of coordinate vectors as input and produces a scalar

  8. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    A (0,0) tensor is a number in the field . A (1,0) tensor is a vector. A (0,1) tensor is a covector. A (0,2) tensor is a bilinear form. An example is the metric tensor . A (1,1) tensor is a linear map.

  9. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):