When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cook–Levin theorem - Wikipedia

    en.wikipedia.org/wiki/Cook–Levin_theorem

    In 1971, Stephen Cook published his paper "The complexity of theorem proving procedures" [2] in conference proceedings of the newly founded ACM Symposium on Theory of Computing. Richard Karp's subsequent paper, "Reducibility among combinatorial problems", [1] generated renewed interest in Cook's paper by providing a list of 21 NP-complete problems.

  3. Circuit satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Circuit_satisfiability_problem

    The circuit on the left is satisfiable but the circuit on the right is not. In theoretical computer science, the circuit satisfiability problem (also known as CIRCUIT-SAT, CircuitSAT, CSAT, etc.) is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true. [1]

  4. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    As noted above, this is the Cook–Levin theorem; its proof that satisfiability is NP-complete contains technical details about Turing machines as they relate to the definition of NP. However, after this problem was proved to be NP-complete, proof by reduction provided a simpler way to show that many other problems are also NP-complete ...

  5. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    The concept of NP-completeness was introduced in 1971 (see Cook–Levin theorem), though the term NP-complete was introduced later. At the 1971 STOC conference, there was a fierce debate between the computer scientists about whether NP-complete problems could be solved in polynomial time on a deterministic Turing machine .

  6. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    A useful property of Cook's reduction is that it preserves the number of accepting answers. For example, deciding whether a given graph has a 3-coloring is another problem in NP; if a graph has 17 valid 3-colorings, then the SAT formula produced by the Cook–Levin reduction will have 17 satisfying assignments.

  7. Propositional proof system - Wikipedia

    en.wikipedia.org/wiki/Propositional_proof_system

    For example, just as counting cannot be done by an circuit family of subexponential size, many tautologies relating to the pigeonhole principle cannot have subexponential proofs in a proof system based on bounded-depth formulas (and in particular, not by resolution-based systems, since they rely solely on depth 1 formulas).

  8. Cook's distance - Wikipedia

    en.wikipedia.org/wiki/Cook's_distance

    In statistics, Cook's distance or Cook's D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. [1] In a practical ordinary least squares analysis, Cook's distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it ...

  9. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n. The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is a n ...