Search results
Results From The WOW.Com Content Network
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.
More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region enclosed by the surface. Intuitively, it states that "the sum of all sources of the field in a region (with sinks ...
Some observed electromagnetic phenomena cannot be explained with Maxwell's equations if the source of the electromagnetic fields are the classical distributions of charge and current. These include photon–photon scattering and many other phenomena related to photons or virtual photons , " nonclassical light " and quantum entanglement of ...
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally ...
It states that the magnetic field B has divergence equal to zero, [1] in other words, that it is a solenoidal vector field. It is equivalent to the statement that magnetic monopoles do not exist. [2] Rather than "magnetic charges", the basic entity for magnetism is the magnetic dipole.
where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).
The most important aspect of the EFIE is that it allows us to solve the radiation/scattering problem in an unbounded region, or one whose boundary is located at infinity. For closed surfaces, it is possible to use the Magnetic Field Integral Equation or the Combined Field Integral Equation, both of which result in a set of equations with ...