Search results
Results From The WOW.Com Content Network
A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, [1] while others extend the definition to include substances like aerosols and gels.
A colloidal crystal is an ordered array of colloidal particles and fine grained materials analogous to a standard crystal whose repeating subunits are atoms or molecules. [1] A natural example of this phenomenon can be found in the gem opal, where spheres of silica assume a close-packed locally periodic structure under moderate compression.
Examples of a stable and of an unstable colloidal dispersion. Colloidal particles are the components of a colloid. A colloid is a substance microscopically dispersed evenly throughout another substance. [21] Such colloidal system can be solid, liquid, or gaseous; as well as continuous or dispersed.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Milk is an emulsified colloid of liquid butterfat globules of 0.1 to 10 micrometer dispersed within a water-based solution.. Interface and colloid science is an interdisciplinary intersection of branches of chemistry, physics, nanoscience and other fields dealing with colloids, heterogeneous systems consisting of a mechanical mixture of particles between 1 nm and 1000 nm dispersed in a ...
Sols are stable, so that they do not settle down when left undisturbed, and exhibit the Tyndall effect, which is the scattering of light by the particles in the colloid. The size of the particles can vary from 1 nm - 100 nm. Examples include amongst others blood, pigmented ink, cell fluids, paint, antacids and mud.
A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. [1] When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated.
Thus, the change of the free energy in mixing is the sum of the enthalpy of mixing and the entropy of mixing. The enthalpy of mixing is zero for ideal mixtures, and ideal mixtures are enough to describe many common solutions. Thus, in many cases, mixing (or phase separation) is driven primarily by the entropy of mixing.