Search results
Results From The WOW.Com Content Network
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation (equation shown below), an empirical relationship between temperature and rate coefficient. It is usually designated by A when determined from experiment, while Z is usually left for collision frequency. The pre-exponential ...
The kinetic theory of gases allows accurate calculation of the temperature-variation of gaseous viscosity. The theoretical basis of the kinetic theory is given by the Boltzmann equation and Chapman–Enskog theory, which allow accurate statistical modeling of molecular trajectories.
Svante Arrhenius (1889) equation is often used to characterize the effect of temperature on the rates of chemical reactions. [1] The Arrhenius formula gave a simple and powerful law, which in a vast generality of cases describes the dependence on absolute temperature of the rate constant as following,
Accelerated aging techniques, particularly those using the Arrhenius equation, have frequently been criticized in recent decades. While some researchers claim that the Arrhenius equation can be used to quantitatively predict the lifespan of tested papers, [31] other researchers disagree. Many argue that this method cannot predict an exact ...
An alternative model suggested by Arrhenius is also used. The WLF model is related to macroscopic motion of the bulk material, while the Arrhenius model considers local motion of polymer chains. Some materials, polymers in particular, show a strong dependence of viscoelastic properties on the temperature at which they are measured.
The equation for the rate constant is similar in functional form to both the Arrhenius and Eyring equations: k ( T ) = P Z e − Δ E / R T , {\displaystyle k(T)=PZe^{-\Delta E/RT},} where P is the steric (or probability) factor and Z is the collision frequency, and Δ E is energy input required to overcome the activation barrier.
In the equation, k B and h are the Boltzmann and Planck constants, respectively. Although the equations look similar, it is important to note that the Gibbs energy contains an entropic term in addition to the enthalpic one. In the Arrhenius equation, this entropic term is accounted for by the pre-exponential factor A.