Search results
Results From The WOW.Com Content Network
Thus, if both bits in the compared position are 1, the bit in the resulting binary representation is 1 (1 × 1 = 1); otherwise, the result is 0 (1 × 0 = 0 and 0 × 0 = 0). For example: 0101 (decimal 5) AND 0011 (decimal 3) = 0001 (decimal 1) The operation may be used to determine whether a particular bit is set (1) or cleared (0). For example ...
Similarly, the most significant bit (MSb) represents the highest-order place of the binary integer. The LSb is sometimes referred to as the low-order bit or right-most bit, due to the convention in positional notation of writing less significant digits further to the right. The MSb is similarly referred to as the high-order bit or left-most bit.
The bit is the most basic unit of information in computing and digital communication. The name is a portmanteau of binary digit. [1] The bit represents a logical state with one of two possible values. These values are most commonly represented as either " 1" or "0 ", but other representations such as true/false, yes/no, on/off, or +/− are ...
BIT Numerical Mathematics is a quarterly peer-reviewed mathematics journal that covers research in numerical analysis. It was established in 1961 by Carl Erik Fröberg and is published by Springer Science+Business Media. The name "BIT" is a reverse acronym of Tidskrift för Informationsbehandling (Swedish: Journal of Information Processing). [1]
The modern binary number system, the basis for binary code, is an invention by Gottfried Leibniz in 1689 and appears in his article Explication de l'Arithmétique Binaire (English: Explanation of the Binary Arithmetic) which uses only the characters 1 and 0, and some remarks on its usefulness.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Following Gottlob Frege and Bertrand Russell, Hilbert sought to define mathematics logically using the method of formal systems, i.e., finitistic proofs from an agreed-upon set of axioms. [5] One of the main goals of Hilbert's program was a finitistic proof of the consistency of the axioms of arithmetic: that is his second problem. [c]
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.