Search results
Results From The WOW.Com Content Network
For typical serial sorting algorithms, good behavior is O(n log n), with parallel sort in O(log 2 n), and bad behavior is O(n 2). Ideal behavior for a serial sort is O(n), but this is not possible in the average case. Optimal parallel sorting is O(log n). Swaps for "in-place" algorithms. Memory usage (and use of other computer resources).
Although bubble sort is one of the simplest sorting algorithms to understand and implement, its O(n 2) complexity means that its efficiency decreases dramatically on lists of more than a small number of elements. Even among simple O(n 2) sorting algorithms, algorithms like insertion sort are usually considerably more efficient.
It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort. Selection sort is noted for its simplicity and has performance advantages over more complicated algorithms in certain situations, particularly where auxiliary memory is limited.
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
More abstractly, given an O(n) selection algorithm, one can use it to find the ideal pivot (the median) at every step of quicksort and thus produce a sorting algorithm with O(n log n) running time. Practical implementations of this variant are considerably slower on average, but they are of theoretical interest because they show an optimal ...
As a baseline algorithm, selection of the th smallest value in a collection of values can be performed by the following two steps: Sort the collection; If the output of the sorting algorithm is an array, retrieve its th element; otherwise, scan the sorted sequence to find the th element.
In this algorithm, one recursively draws a line to split the vertices into two sets. The Delaunay triangulation is computed for each set, and then the two sets are merged along the splitting line. Using some clever tricks, the merge operation can be done in time O(n), so the total running time is O(n log n). [17]
The naive implementation for generating a suffix tree going forward requires O(n 2) or even O(n 3) time complexity in big O notation, where n is the length of the string. By exploiting a number of algorithmic techniques, Ukkonen reduced this to O ( n ) (linear) time, for constant-size alphabets, and O ( n log n ) in general, matching the ...