Search results
Results From The WOW.Com Content Network
Thus, allele R is dominant over allele r, and allele r is recessive to allele R. [4] Dominance is not inherent to an allele or its traits . It is a strictly relative effect between two alleles of a given gene of any function; one allele can be dominant over a second allele of the same gene, recessive to a third, and co-dominant with a fourth.
When the tall allele was present, the plant would be tall, even if the plant was heterozygous. In order for the plant to be short, it had to be homozygous for the recessive allele. [8] [9] One way this can be illustrated is using a Punnett square. In a Punnett square, the genotypes of the parents are placed on the outside.
Where the heterozygote is indistinguishable from one of the homozygotes, the allele expressed is the one that leads to the "dominant" phenotype, [9] [10] and the other allele is said to be "recessive". The degree and pattern of dominance varies among loci.
Dominance is not an inherent property of any allele or phenotype, but simply describes its relationship to one or more other alleles or phenotypes; it is possible for one allele to be simultaneously dominant over a second allele, recessive to a third, and codominant to a fourth. In genetics shorthand, dominant alleles are often represented by a ...
An individual that is homozygous-recessive for a particular trait carries two copies of the allele that codes for the recessive trait. This allele, often called the "recessive allele", is usually represented by the lowercase form of the letter used for the corresponding dominant trait (such as, with reference to the example above, "p" for the ...
The hair color of these children depends on how these alleles work together. If one allele dominates the instructions from another, it is called the dominant allele, and the allele that is overridden is called the recessive allele. In the case of a daughter with alleles for both red and brown hair, brown is dominant and she ends up with brown hair.
This makes some species less conspicuous to predators, while others, such as leopards, use it as a foraging advantage during night hunting. [4] Typically, adaptive melanism is heritable : A dominant allele , which is entirely or nearly entirely expressed in the phenotype , is responsible for the excessive amount of melanin.
If you know the genotypes of the organisms, you can determine which alleles are dominant and which are recessive. For example, if the allele specifying tall stems in pea plants is dominant over the allele specifying short stems, then pea plants that inherit one tall allele from one parent and one short allele from the other parent will also ...