When.com Web Search

  1. Ad

    related to: ln x y simplify 2 1/2 divided by 11 1 2

Search results

  1. Results From The WOW.Com Content Network
  2. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...

  3. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    For example, ln i = ⁠ iπ / 2 ⁠ or ⁠ 5iπ / 2 ⁠ or -⁠ 3iπ / 2 ⁠, etc.; and although i 4 = 1, 4 ln i can be defined as 2iπ, or 10iπ or −6iπ, and so on. Plots of the natural logarithm function on the complex plane ( principal branch )

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    As an integral, ln(t) equals the area between the x-axis and the graph of the function 1/x, ranging from x = 1 to x = t. This is a consequence of the fundamental theorem of calculus and the fact that the derivative of ln(x) is 1/x. Product and power logarithm formulas can be derived from this definition. [41]

  5. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    The formula was first discovered by Abraham de Moivre [2] in the form ! [] +. De Moivre gave an approximate rational-number expression for the natural logarithm of the constant. Stirling's contribution consisted of showing that the constant is precisely 2 π {\displaystyle {\sqrt {2\pi }}} .

  6. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    All instances of log(x) without a subscript base should be interpreted as a natural logarithm, also commonly written as ln(x) or log e (x Existence of a prime number between any number and its double In number theory , Bertrand's postulate is the theorem that for any integer n > 3 {\displaystyle n>3} , there exists at least one prime number p ...

  7. Mirifici Logarithmorum Canonis Descriptio - Wikipedia

    en.wikipedia.org/wiki/Mirifici_Logarithmorum...

    [1]: p. 35 The proportion along the top rows, starting with 1 is 0.99. The entries in each column are in proportion 0.9995. (Note that 0.9995 = 1-1/2000, allowing "tolerably easy" multiplication by halving, shifting and subtracting.) Napier uses the first column to computing the logarithm of .99, using log of .9995, which he already has.

  8. List of integrals of logarithmic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity. Integrals involving only logarithmic functions

  9. Logarithmic number system - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_number_system

    An LNS can be considered as a floating-point number with the significand being always equal to 1 and a non-integer exponent. This formulation simplifies the operations of multiplication, division, powers and roots, since they are reduced down to addition, subtraction, multiplication, and division, respectively.