Search results
Results From The WOW.Com Content Network
In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...
The optical band gap (see below) determines what portion of the solar spectrum a photovoltaic cell absorbs. [18] Strictly, a semiconductor will not absorb photons of energy less than the band gap; whereas most of the photons with energies exceeding the band gap will generate heat. Neither of them contribute to the efficiency of a solar cell.
A, B, and C depend on the band structure of the material. They are positive constants such that 4C − B 2 > 0. Finally, n(∞), a constant greater than unity, represents the value of n at E = ∞. The parameters B 0 and C 0 in the equation for n(E) are not independent parameters, but depend on A, B, C, and E g. They are given by:
The band gap (usually given the symbol ) gives the energy difference between the lower edge of the conduction band and the upper edge of the valence band. Each semiconductor has different electron affinity and band gap values. For semiconductor alloys it may be necessary to use Vegard's law to calculate these values.
With the aid of these rules the UV absorption maximum can be predicted, for example in these two compounds: [8] In the compound on the left, the base value is 214 nm (a heteroannular diene). This diene group has 4 alkyl substituents (labeled 1,2,3,4) and the double bond in one ring is exocyclic to the other (adding 5 nm for an exocyclic double ...
The algorithm is as follows: start with an ansatz bare band, calculate ″ by eq. (2), transform it into ′ using the Kramers-Kronig relation, then use this function to calculate the bare band dispersion on a discrete set of points by eq. (1), and feed to the algorithm its fit to a suitable curve as a new ansatz bare band; convergence is ...
In optics, the Kubelka–Munk theory devised by Paul Kubelka [1] [2] and Franz Munk, is a fundamental approach to modelling the appearance of paint films. As published in 1931, [3] the theory addresses "the question of how the color of a substrate is changed by the application of a coat of paint of specified composition and thickness, and especially the thickness of paint needed to obscure the ...
In solid-state physics, an energy gap or band gap is an energy range in a solid where no electron states exist, i.e. an energy range where the density of states vanishes. Especially in condensed matter physics , an energy gap is often known more abstractly as a spectral gap , a term which need not be specific to electrons or solids.