Search results
Results From The WOW.Com Content Network
Just as the polynomial ring in n variables with coefficients in the commutative ring R is the free commutative R-algebra of rank n, the noncommutative polynomial ring in n variables with coefficients in the commutative ring R is the free associative, unital R-algebra on n generators, which is noncommutative when n > 1.
More generally, the free algebra over any ring S may be used, and gives the concept of PI-algebra. If the degree of the polynomial P is defined in the usual way, the polynomial P is called monic if at least one of its terms of highest degree has coefficient equal to 1. Every commutative ring is a PI-ring, satisfying the polynomial identity XY ...
In mathematics, the ring of polynomial functions on a vector space V over a field k gives a coordinate-free analog of a polynomial ring. It is denoted by k[V]. If V is finite dimensional and is viewed as an algebraic variety, then k[V] is precisely the coordinate ring of V. The explicit definition of the ring can be given as follows.
The twisted polynomial ring {} is defined as the set of polynomials in the variable and coefficients in . It is endowed with a ring structure with the usual addition, but with a non-commutative multiplication that can be summarized with the relation τ x = x p τ {\displaystyle \tau x=x^{p}\tau } for x ∈ k {\displaystyle x\in k} .
The Weyl algebras are Ore extensions, with R any commutative polynomial ring, σ the identity ring endomorphism, and δ the polynomial derivative. Ore algebras are a class of iterated Ore extensions under suitable constraints that permit to develop a noncommutative extension of the theory of Gröbner bases.
Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
The ring of polynomials in finitely-many variables over the integers or a field is Noetherian. Rings that are not Noetherian tend to be (in some sense) very large. Here are some examples of non-Noetherian rings: The ring of polynomials in infinitely-many variables, X 1, X 2, X 3, etc.
The set of all polynomials with real coefficients that are divisible by the polynomial + is an ideal in the ring of all real-coefficient polynomials [] . Take a ring R {\displaystyle R} and positive integer n {\displaystyle n} .