Search results
Results From The WOW.Com Content Network
Practically, this means that a randomly sampled real tensor (from a continuous probability measure on the space of tensors) of size will be a rank-1 tensor with probability zero, a rank-2 tensor with positive probability, and rank-3 with positive probability. On the other hand, a randomly sampled complex tensor of the same size will be a rank-1 ...
The total number of indices is also called the order, degree or rank of a tensor, [2] [3] [4] although the term "rank" generally has another meaning in the context of matrices and tensors. Just as the components of a vector change when we change the basis of the vector space, the components of a tensor also change under such a transformation.
The rank of a tensor of order 2 agrees with the rank when the tensor is regarded as a matrix, [3] and can be determined from Gaussian elimination for instance. The rank of an order 3 or higher tensor is however often very difficult to determine, and low rank decompositions of tensors are sometimes of great practical interest. [4]
A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part.
A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...
Hooke's law has a symmetric fourth-order stiffness tensor with 81 components (3×3×3×3), but because the application of such a rank-4 tensor to a symmetric rank-2 tensor must yield another symmetric rank-2 tensor, not all of the 81 elements are independent. Voigt notation enables such a rank-4 tensor to be represented by a 6×6 matrix ...
However, the stress tensor itself is a physical quantity and as such, it is independent of the coordinate system chosen to represent it. There are certain invariants associated with every tensor which are also independent of the coordinate system. For example, a vector is a simple tensor of rank one. In three dimensions, it has three components.
In the same way, tensor quantities must be represented by tensor operators. An example of a tensor quantity (of rank two) is the electrical quadrupole moment of the above molecule. Likewise, the octupole and hexadecapole moments would be tensors of rank three and four, respectively.