Ad
related to: oxymercuration reduction of alkenes 1 x 2 5 8 label template microsoft worduline.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
In organic chemistry, the oxymercuration reaction is an electrophilic addition reaction that transforms an alkene (R 2 C=CR 2) into a neutral alcohol. In oxymercuration, the alkene reacts with mercuric acetate (AcO−Hg−OAc) in aqueous solution to yield the addition of an acetoxymercury (−HgOAc) group and a hydroxy (−OH) group across the ...
The reaction thus provides a more stereospecific and complementary regiochemical alternative to other hydration reactions such as acid-catalyzed addition and the oxymercuration–reduction process. The reaction was first reported by Herbert C. Brown in the late 1950s [2] and it was recognized in his receiving the Nobel Prize in Chemistry in 1979.
This reductive coupling can be viewed as involving two steps. First is the formation of a pinacolate (1,2-diolate) complex, a step which is equivalent to the pinacol coupling reaction. The second step is the deoxygenation of the pinacolate, which yields the alkene, this second step exploits the oxophilicity of titanium.
C 2 H 5-O-SO 3 H + H 2 O → H 2 SO 4 + C 2 H 5 OH. This two step route is called the "indirect process". In the "direct process," the acid protonates the alkene, and water reacts with this incipient carbocation to give the alcohol. The direct process is more popular because it is simpler. The acid catalysts include phosphoric acid and several ...
[2] 1,2-disubstituted Cycloalkene undergoing syn and anti addition. Syn addition is the addition of two substituents to the same side (or face) of a double bond or triple bond, resulting in a decrease in bond order but an increase in number of substituents. [3] Generally the substrate will be an alkene or alkyne.
The Chugaev elimination is a chemical reaction that involves the elimination of water from alcohols to produce alkenes.The intermediate is a xanthate.It is named for its discoverer, the Russian chemist Lev Aleksandrovich Chugaev (1873–1922), who first reported the reaction sequence in 1899.
The Shapiro reaction or tosylhydrazone decomposition is an organic reaction in which a ketone or aldehyde is converted to an alkene through an intermediate hydrazone in the presence of 2 equivalents of organolithium reagent. [1] [2] [3] The reaction was discovered by Robert H. Shapiro in 1967. [4]
Hydroboration of 1,2-disubstituted alkenes, such as a cis or trans olefin, produces generally a mixture of the two organoboranes of comparable amounts, even if the steric properties of the substituents are very different. For such 1,2-disubstituted olefins, regioselectivity can be observed only when one of the two substituents is a phenyl ring.