When.com Web Search

  1. Ads

    related to: wetted perimeter channel flow

Search results

  1. Results From The WOW.Com Content Network
  2. Wetted perimeter - Wikipedia

    en.wikipedia.org/wiki/Wetted_perimeter

    The wetted perimeter can be defined mathematically as = = where l i is the length of each surface in contact with the aqueous body. In open channel flow, the wetted perimeter is defined as the surface of the channel bottom and sides in direct contact with the aqueous body.

  3. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon ...

  4. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    This means the greater the hydraulic radius, the larger volume of water the channel can carry. Based on the 'constant shear stress at the boundary' assumption, [6] hydraulic radius is defined as the ratio of the channel's cross-sectional area of the flow to its wetted perimeter (the portion of the cross-section's perimeter that is "wet"):

  5. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    This is the cross-sectional area of the channel divided by the wetted perimeter. For a semi-circular channel, it is a quarter of the diameter (in case of full pipe flow). For a rectangular channel, the hydraulic radius is the cross-sectional area divided by the wetted perimeter.

  6. Chézy formula - Wikipedia

    en.wikipedia.org/wiki/Chézy_formula

    is the hydraulic radius, which is the cross-sectional area of flow divided by the wetted perimeter (for a wide channel this is approximately equal to the water depth) [m]; is Manning's coefficient [time/length 1/3]; and; is a constant; k = 1 when using SI units and k = 1.49 when using BG units.

  7. Flow in partially full conduits - Wikipedia

    en.wikipedia.org/wiki/Flow_in_partially_full...

    Closed channel flows are generally governed by the principles of channel flow as the liquid flowing possesses free surface inside the conduit. [1] However, the convergence of the boundary to the top imparts some special characteristics to the flow like closed channel flows have a finite depth at which maximum discharge occurs. [2] For ...

  8. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    For free surfaces (such as in open-channel flow), the wetted perimeter includes only the walls in contact with the fluid. [ 3 ] Similarly, in the combustion chamber of a rocket engine , the characteristic length L ∗ {\displaystyle L^{*}} is defined as the chamber volume divided by the throat area. [ 4 ]

  9. Shallow water equations - Wikipedia

    en.wikipedia.org/wiki/Shallow_water_equations

    where x is the space coordinate along the channel axis, t denotes time, A(x,t) is the cross-sectional area of the flow at location x, u(x,t) is the flow velocity, ζ(x,t) is the free surface elevation and τ(x,t) is the wall shear stress along the wetted perimeter P(x,t) of the cross section at x.