Ad
related to: open channel and closed flow
Search results
Results From The WOW.Com Content Network
In fluid mechanics and hydraulics, open-channel flow is a type of liquid flow within a conduit with a free surface, known as a channel. [1] [2] ...
Closed conduit flow differs from open channel flow only in the fact that in closed channel flow there is a closing top width while open channels have one side exposed to its immediate surroundings. Closed channel flows are generally governed by the principles of channel flow as the liquid flowing possesses free surface inside the conduit. [1]
Not all flow within a closed conduit is considered pipe flow. Storm sewers are closed conduits but usually maintain a free surface and therefore are considered open-channel flow. The exception to this is when a storm sewer operates at full capacity, and then can become pipe flow. Energy in pipe flow is expressed as head and is defined by the ...
All flow in so-called open channels is driven by gravity. It was first presented by the French engineer Philippe Gaspard Gauckler [ fr ] in 1867, [ 1 ] and later re-developed by the Irish engineer Robert Manning in 1890. [ 2 ]
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where
Gradually varied flow occurs when the change in flow depth per change in flow distance is very small. In this case, hydrostatic relationships developed for uniform flow still apply. Examples of this include the backwater behind an in-stream structure (e.g. dam, sluice gate, weir, etc.), when there is a constriction in the channel, and when ...
The one-dimensional (1-D) Saint-Venant equations were derived by Adhémar Jean Claude Barré de Saint-Venant, and are commonly used to model transient open-channel flow and surface runoff. They can be viewed as a contraction of the two-dimensional (2-D) shallow-water equations, which are also known as the two-dimensional Saint-Venant equations.
The Chézy formula describes mean flow velocity in turbulent open channel flow and is used broadly in fields related to fluid mechanics and fluid dynamics. Open channels refer to any open conduit, such as rivers, ditches, canals, or partially full pipes. The Chézy formula is defined for uniform equilibrium and non-uniform, gradually varied flows.