When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generalized inverse - Wikipedia

    en.wikipedia.org/wiki/Generalized_inverse

    In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element x is an element y that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inverse of a matrix is to obtain a matrix that can serve as an inverse in some sense for a wider class of ...

  3. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    [1] Assuming that has an inverse in a neighbourhood of and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at and have a derivative given by the above formula. The inverse function rule may also be expressed in Leibniz's notation. As that notation suggests,

  4. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ + ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  5. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    In keeping with the general notation, some English authors use expressions like sin −1 (x) to denote the inverse of the sine function applied to x (actually a partial inverse; see below). [8] [6] Other authors feel that this may be confused with the notation for the multiplicative inverse of sin (x), which can be denoted as (sin (x)) −1. [6]

  6. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    The inverse function theorem can also be generalized to differentiable maps between Banach spaces X and Y. [20] Let U be an open neighbourhood of the origin in X and F : U → Y {\displaystyle F:U\to Y\!} a continuously differentiable function, and assume that the Fréchet derivative d F 0 : X → Y {\displaystyle dF_{0}:X\to Y\!} of F at 0 is ...

  7. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    Of course, the Jacobian matrix of the composition g ° f is a product of corresponding Jacobian matrices: J x (g ° f) =J ƒ(x) (g)J x (ƒ). This is a higher-dimensional statement of the chain rule. For real valued functions from R n to R (scalar fields), the Fréchet derivative corresponds to a vector field called the total derivative.

  8. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    The adjective "generalized" distinguishes these parameters from the traditional use of the term "coordinate" to refer to Cartesian coordinates. An example of a generalized coordinate would be to describe the position of a pendulum using the angle of the pendulum relative to vertical, rather than by the x and y position of the pendulum.

  9. Fréchet distribution - Wikipedia

    en.wikipedia.org/wiki/Fréchet_distribution

    The Fréchet distribution, also known as inverse Weibull distribution, [2] [3] is a special case of the generalized extreme value distribution. It has the cumulative distribution function ( ) = > . where α > 0 is a shape parameter.