Ad
related to: quotient of functions definition geometry quizlet answers quiz 3
Search results
Results From The WOW.Com Content Network
In algebraic geometry, a geometric quotient of an algebraic variety X with the action of an algebraic group G is a morphism of varieties: such that [1] (i) The map π {\displaystyle \pi } is surjective, and its fibers are exactly the G-orbits in X.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
Thus these six ratios define six functions of θ, which are the trigonometric functions. In the following definitions, the hypotenuse is the length of the side opposite the right angle, opposite represents the side opposite the given angle θ, and adjacent represents the side between the angle θ and the right angle. [2] [3]
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
The direct approach can be made, by means of the function field of a variety (i.e. rational functions): take the G-invariant rational functions on it, as the function field of the quotient variety. Unfortunately this — the point of view of birational geometry — can only give a first approximation to the answer. As Mumford put it in the ...
The quotient is also less commonly defined as the greatest whole number of times a divisor may be subtracted from a dividend—before making the remainder negative. For example, the divisor 3 may be subtracted up to 6 times from the dividend 20, before the remainder becomes negative: 20 − 3 − 3 − 3 − 3 − 3 − 3 ≥ 0, while
[5] [6] The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h). [ 7 ] [ 8 ] : 237 [ 9 ] The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change.
An effective quotient orbifold, e.g., [/] where the action has only finite stabilizers on the smooth space , is an example of a quotient stack. [2]If = with trivial action of (often is a point), then [/] is called the classifying stack of (in analogy with the classifying space of ) and is usually denoted by .