When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  3. Thermodynamic activity - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_activity

    The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.

  4. Joule effect - Wikipedia

    en.wikipedia.org/wiki/Joule_effect

    The Joule–Thomson effect, the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. The Gough–Joule effect or the Gow–Joule effect, which is the tendency of elastomers to contract if heated while they are under tension.

  5. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    This is the definition declared in the modern International System of Units in 1960. [13] The definition of the joule as J = kg⋅m 2 ⋅s −2 has remained unchanged since 1946, but the joule as a derived unit has inherited changes in the definitions of the second (in 1960 and 1967), the metre (in 1983) and the kilogram . [14]

  6. Activity coefficient - Wikipedia

    en.wikipedia.org/wiki/Activity_coefficient

    In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...

  7. Isenthalpic process - Wikipedia

    en.wikipedia.org/wiki/Isenthalpic_process

    If a steady-state, steady-flow process is analysed using a control volume, everything outside the control volume is considered to be the surroundings. [2]Such a process will be isenthalpic if there is no transfer of heat to or from the surroundings, no work done on or by the surroundings, and no change in the kinetic energy of the fluid. [3]

  8. Intensive and extensive properties - Wikipedia

    en.wikipedia.org/wiki/Intensive_and_extensive...

    Not all properties of matter fall into these two categories. For example, the square root of the volume is neither intensive nor extensive. [ 1 ] If a system is doubled in size by juxtaposing a second identical system, the value of an intensive property equals the value for each subsystem and the value of an extensive property is twice the ...

  9. Chemical potential - Wikipedia

    en.wikipedia.org/wiki/Chemical_potential

    Chemical potentials are important in many aspects of multi-phase equilibrium chemistry, including melting, boiling, evaporation, solubility, osmosis, partition coefficient, liquid-liquid extraction and chromatography. In each case the chemical potential of a given species at equilibrium is the same in all phases of the system.