Search results
Results From The WOW.Com Content Network
A looped animation of a wave packet propagating without dispersion: the envelope is maintained even as the phase changes. In physics, a wave packet (also known as a wave train or wave group) is a short burst of localized wave action that travels as a unit, outlined by an envelope.
Second-order initial conditions are found that suppress secular behavior and excite a wave packet of which the energy agrees with fluid theory. The figure shows the energy density of a wave packet traveling at the group velocity, its energy being carried away by electrons moving at the phase velocity. Total energy, the area under the curves, is ...
In the limit of large field the state becomes a good approximation of a noiseless stable classical wave. The average photon numbers of the three states from top to bottom are n =4.2, 25.2, 924.5 [5] Figure 2: The oscillating wave packet corresponding to the second coherent state
A simulation of a wave packet incident on a potential barrier. In relative units, the barrier energy is 20, greater than the mean wave packet energy of 14. A portion of the wave packet passes through the barrier. The wave function of a physical system of particles specifies everything that can be known about the system. [8]
Dispersion occurs when sinusoidal waves of different wavelengths have different propagation velocities, so that a wave packet of mixed wavelengths tends to spread out in space. The speed of a plane wave, v {\displaystyle v} , is a function of the wave's wavelength λ {\displaystyle \lambda } :
When interfering, two waves add together to create a wave of greater amplitude than either one (constructive interference) or subtract from each other to create a wave of minima which may be zero [1]: 286 (destructive interference), depending on their relative phase. Constructive or destructive interference are limit cases, and two waves always ...
In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves differ by less than the coherence length. A wave with a longer coherence length is closer to a perfect ...
This is somewhat analogous to the situation in classical physics, except that the classical "wave function" does not necessarily obey a wave equation. If the wave function is physically real, in some sense and to some extent, then the collapse of the wave function is also seen as a real process, to the same extent. [citation needed]