When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    The ID3 algorithm begins with the original set as the root node. On each iteration of the algorithm, it iterates through every unused attribute of the set and calculates the entropy or the information gain of that attribute. It then selects the attribute which has the smallest entropy (or largest information gain) value.

  3. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    The relatively high value of entropy () = (1 is the optimal value) suggests that the root node is highly impure and the constituents of the input at the root node would look like the leftmost figure in the above Entropy Diagram. However, such a set of data is good for learning the attributes of the mutations used to split the node.

  4. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The inspiration for adopting the word entropy in information theory came from the close resemblance between Shannon's formula and very similar known formulae from statistical mechanics. In statistical thermodynamics the most general formula for the thermodynamic entropy S of a thermodynamic system is the Gibbs entropy

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Notable decision tree algorithms include: ID3 (Iterative Dichotomiser 3) C4.5 (successor of ID3) CART (Classification And Regression Tree) [7] OC1 (Oblique classifier 1). First method that created multivariate splits at each node. [17] Chi-square automatic interaction detection (CHAID). Performs multi-level splits when computing classification ...

  6. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  7. Information gain ratio - Wikipedia

    en.wikipedia.org/wiki/Information_gain_ratio

    In decision tree learning, information gain ratio is a ratio of information gain to the intrinsic information. It was proposed by Ross Quinlan, [1] to reduce a bias towards multi-valued attributes by taking the number and size of branches into account when choosing an attribute.

  8. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Thus the definitions of entropy in statistical mechanics (The Gibbs entropy formula = ⁡) and in classical thermodynamics (=, and the fundamental thermodynamic relation) are equivalent for microcanonical ensemble, and statistical ensembles describing a thermodynamic system in equilibrium with a reservoir, such as the canonical ensemble, grand ...

  9. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    In information theory, the cross-entropy between two probability distributions and , over the same underlying set of events, measures the average number of bits needed to identify an event drawn from the set when the coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution .