Search results
Results From The WOW.Com Content Network
The problem has been shown to be NP-hard (more precisely, it is complete for the complexity class FP NP; see function problem), and the decision problem version ("given the costs and a number x, decide whether there is a round-trip route cheaper than x") is NP-complete. The bottleneck travelling salesman problem is also NP-hard.
For example, the formula "a AND NOT b" is satisfiable because one can find the values a = TRUE and b = FALSE, which make (a AND NOT b) = TRUE. In contrast, "a AND NOT a" is unsatisfiable. SAT is the first problem that was proven to be NP-complete—this is the Cook–Levin theorem.
A simple example of an NP-hard problem is the subset sum problem. Informally, if H is NP-hard, then it is at least as difficult to solve as the problems in NP. However, the opposite direction is not true: some problems are undecidable, and therefore even more difficult to solve than all problems in NP, but they are probably not NP-hard (unless ...
Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.
Informally, an NP-complete problem is an NP problem that is at least as "tough" as any other problem in NP. NP-hard problems are those at least as hard as NP problems; i.e., all NP problems can be reduced (in polynomial time) to them. NP-hard problems need not be in NP; i.e., they need not have solutions verifiable in polynomial time.
Therefore, the longest path problem is NP-hard. The question "does there exist a simple path in a given graph with at least k edges" is NP-complete. [2] In weighted complete graphs with non-negative edge weights, the weighted longest path problem is the same as the Travelling salesman path problem, because the longest path always includes all ...
Quadratic programming (NP-hard in some cases, P if convex) Subset sum problem [3]: SP13 Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric.
When parameterizing the graph Steiner tree problem by the number p of non-terminals (Steiner vertices) in the optimum solution, the problem is W[1]-hard (in contrast to the parameterization by the number of terminals, as mentioned above). At the same time the problem is APX-complete and thus does not admit a PTAS, unless P = NP.