Search results
Results From The WOW.Com Content Network
Floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance in computing, useful in fields of scientific computations that require floating-point calculations. [1] For such cases, it is a more accurate measure than measuring instructions per second. [citation needed]
The term flip-flop has historically referred generically to both level-triggered (asynchronous, transparent, or opaque) and edge-triggered (synchronous, or clocked) circuits that store a single bit of data using gates. [1] Modern authors reserve the term flip-flop exclusively for edge-triggered storage elements and latches for level-triggered ones.
In the early 1990s, MIPS began to license their designs to third-party vendors. This proved fairly successful due to the simplicity of the core, which allowed it to have many uses that would have formerly used much less able complex instruction set computer (CISC) designs of similar gate count and price; the two are strongly related: the price of a CPU is generally related to the number of ...
FLOPS per watt is a common measure. Like the FLOPS ( Floating Point Operations Per Second) metric it is based on, the metric is usually applied to scientific computing and simulations involving many floating point calculations.
[11] [failed verification] When MIPS II was introduced, MIPS was renamed MIPS I to distinguish it from the new version. [3]: 32 MIPS Computer Systems' R6000 microprocessor (1989) was the first MIPS II implementation. [3]: 8 Designed for servers, the R6000 was fabricated and sold by Bipolar Integrated Technology, but was a commercial failure.
This was chosen because the 11/780 was roughly equivalent in performance to an IBM System/370 model 158–3, which was commonly accepted in the computing industry as running at 1 MIPS. Many minicomputer performance claims were based on the Fortran version of the Whetstone benchmark , giving Millions of Whetstone Instructions Per Second (MWIPS).
In digital electronics, a synchronous circuit is a digital circuit in which the changes in the state of memory elements are synchronized by a clock signal. In a sequential digital logic circuit, data is stored in memory devices called flip-flops or latches. The output of a flip-flop is constant until a pulse is applied to its "clock" input ...
Registers are normally measured by the number of bits they can hold, for example, an 8-bit register, 32-bit register, 64-bit register, 128-bit register, or more.In some instruction sets, the registers can operate in various modes, breaking down their storage memory into smaller parts (32-bit into four 8-bit ones, for instance) to which multiple data (vector, or one-dimensional array of data ...