Search results
Results From The WOW.Com Content Network
The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system in the xy-plane if observed from above the xy-plane) is called right-handed or positive. 3D Cartesian coordinate handedness. The name derives from the right-hand rule.
The origin of a Cartesian coordinate system. In mathematics, the origin of a Euclidean space is a special point, usually denoted by the letter O, used as a fixed point of reference for the geometry of the surrounding space. In physical problems, the choice of origin is often arbitrary, meaning any choice of origin will ultimately give the same ...
Cartesian plane with marked points (signed ordered pairs of coordinates). For any point, the abscissa is the first value (x coordinate), and the ordinate is the second value (y coordinate). In mathematics , the abscissa ( / æ b ˈ s ɪ s . ə / ; plural abscissae or abscissas ) and the ordinate are respectively the first and second coordinate ...
This image line is perpendicular to every line of the plane which passes through the origin, in particular the original line (point of the projective plane). All lines that are perpendicular to the original line at the origin lie in the unique plane which is orthogonal to the original line, that is, the image plane under the association.
Pasch's axiom — Let A, B, C be three points that do not lie on a line and let a be a line in the plane ABC which does not meet any of the points A, B, C.If the line a passes through a point of the segment AB, it also passes through a point of the segment AC, or through a point of segment BC.
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).
To plot any dot from its spherical coordinates (r, θ, φ), where θ is inclination, the user would: move r units from the origin in the zenith reference direction (z-axis); then rotate by the amount of the azimuth angle (φ) about the origin from the designated azimuth reference direction, (i.e., either the x– or y–axis, see Definition ...
The branch cut in this example does not have to lie along the real axis; it does not even have to be a straight line. Any continuous curve connecting the origin z = 0 with the point at infinity would work. In some cases the branch cut doesn't even have to pass through the point at infinity. For example, consider the relationship