When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  3. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:

  4. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus of a material can be used to calculate the force it exerts under specific strain. F = E A Δ L L 0 {\displaystyle F={\frac {EA\,\Delta L}{L_{0}}}} where F {\displaystyle F} is the force exerted by the material when contracted or stretched by Δ L {\displaystyle \Delta L} .

  5. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume. [ 1 ] Other moduli describe the material's response ( strain ) to other kinds of stress : the shear modulus describes the response to shear stress , and Young's modulus describes the response to normal (lengthwise stretching) stress.

  6. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...

  7. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    For strain less than the ultimate tensile strain, the increase of work-hardening rate in this region will be greater than the area reduction rate, thereby make this region harder to deform than others, so that the instability will be removed, i.e. the material increases in homogeneity before reaching the ultimate strain.

  8. Compressive strength - Wikipedia

    en.wikipedia.org/wiki/Compressive_strength

    Moderate confining pressure often results in shear fracture, while high confining pressure often leads to ductile failure, even in brittle materials. [5] Axial Splitting relieves elastic energy in brittle material by releasing strain energy in the directions perpendicular to the applied compressive stress.

  9. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    This is not true since the actual area will decrease while deforming due to elastic and plastic deformation. The curve based on the original cross-section and gauge length is called the engineering stress–strain curve, while the curve based on the instantaneous cross-section area and length is called the true stress–strain curve. Unless ...