Search results
Results From The WOW.Com Content Network
The definition of strain rate was first introduced in 1867 by American metallurgist Jade LeCocq, who defined it as "the rate at which strain occurs. It is the time rate of change of strain." In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured.
A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.
The volumetric strain, also called bulk strain, is the relative variation of the volume, as arising from dilation or compression; it is the first strain invariant or trace of the tensor: = = = + + Actually, if we consider a cube with an edge length a, it is a quasi-cube after the deformation (the variations of the angles do not change the ...
The SI unit of measurement for shear rate is s −1, expressed as "reciprocal seconds" or "inverse seconds". [1] However, when modelling fluids in 3D, it is common to consider a scalar value for the shear rate by calculating the second invariant of the strain-rate tensor ˙ =:.
For strain less than the ultimate tensile strain, the increase of work-hardening rate in this region will be greater than the area reduction rate, thereby make this region harder to deform than others, so that the instability will be removed, i.e. the material increases in homogeneity before reaching the ultimate strain.
During forming processes, Z may help determine appropriate changes in strain-rate or temperature when the other variable is altered, in order to keep material flowing properly. Z has also been applied to some metals over a large range of strain rates and temperatures and shown comparable microstructures at the end-of-processing, as long as Z ...
The J-integral represents a way to calculate the strain energy release rate, or work per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.
Where ″ is the global constant for relating strain, strain rate and stress. 3) Based on the true stress-strain curve and its derivative form, we can estimate the strain necessary to start necking. This can be calculated based on the intersection between true stress-strain curve as shown in right.