Search results
Results From The WOW.Com Content Network
Desulfovibrio vulgaris is the best-studied sulfate-reducing microorganism species; the bar in the upper right is 0.5 micrometre long.. Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate (SO 2−
Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. [6] Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its ...
Overview of dissimilatory sulfate reduction performed by sulfate-reducing microorganisms. Dissimilatory sulfate reduction is a form of anaerobic respiration that uses sulfate as the terminal electron acceptor to produce hydrogen sulfide. This metabolism is found in some types of bacteria and archaea which are often termed sulfate-reducing ...
Desulfobacterales are an order of sulfate-reducing bacteria within the phylum Thermodesulfobacteria. [1] The order contains three families; Desulfobacteraceae, Desulfobulbaceae, and Nitrospinaceae. [2] The bacterium in this order are strict anaerobic respirators, using sulfate or nitrate as the terminal electron acceptor instead of oxygen.
The isotope effect of disproportionation is however limited by the rates of sulfate reduction and MSO. [72] Just like the fractionation of oxygen isotopes, the larger fractionations in sulfate from the disproportionation of elemental sulfur point to a key step or pathway critical for inducing this large kinetic isotope effect.
Desulfovibrio is a genus of Gram-negative sulfate-reducing bacteria. Desulfovibrio species are commonly found in aquatic environments with high levels of organic material, as well as in water-logged soils, and form major community members of extreme oligotrophic habitats such as deep granitic fractured rock aquifers.
It is also an anaerobic sulfate-reducing bacterium that is an important organism involved in the bioremediation of heavy metals in the environment. [2] Nitratidesulfovibrio vulgaris is often used as a model organism for sulfur-reducing bacteria [3] and was the first of such bacteria to have its genome sequenced. [4]
Sulfur reduction occurs in plants, fungi, and many bacteria. [10] Sulfate can serve as an electron acceptor in anaerobic respiration and can also be reduced for the formation of organic compounds. Sulfate-reducing bacteria reduce sulfate and other oxidized sulfur compounds, such as sulfite, thiosulfate, and elemental sulfur, to sulfide.