Search results
Results From The WOW.Com Content Network
The basic function of the xylem is to transport water upward from the roots to parts of the plants such as stems and leaves, but it also transports nutrients. [1] [2] The word xylem is derived from the Ancient Greek word, ξύλον (xylon), meaning "wood"; the best-known xylem tissue is wood, though it is found throughout a plant. [3]
Xylem and Phloem. A stem is one of two main structural axes of a vascular plant, the other being the root. It supports leaves, flowers and fruits, transports water and dissolved substances between the roots and the shoots in the xylem and phloem, engages in photosynthesis, stores nutrients, and produces new living tissue. [1]
Cross section of celery stalk, showing vascular bundles, which include both phloem and xylem Detail of the vasculature of a bramble leaf Translocation in vascular plants. Vascular tissue is a complex conducting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue are the xylem and phloem ...
Organic compounds such as sucrose produced by photosynthesis in leaves are distributed by the phloem sieve-tube elements. The xylem consists of vessels in flowering plants and of tracheids in other vascular plants. Xylem cells are dead, hard-walled hollow cells arranged to form files of tubes that function in water transport.
There is also a tissue between xylem and phloem, which is the cambium. The xylem typically lies towards the axis ( adaxial ) with phloem positioned away from the axis ( abaxial ). In a stem or root this means that the xylem is closer to the centre of the stem or root while the phloem is closer to the exterior.
Nutrient ions are transported to the center of the root, the stele, in order for the nutrients to reach the conducting tissues, xylem and phloem. [6] The Casparian strip , a cell wall outside the stele but in the root, prevents passive flow of water and nutrients, helping to regulate the uptake of nutrients and water.
Parenchyma cells have a variety of functions: In leaves, they form two layers of mesophyll cells immediately beneath the epidermis of the leaf, that are responsible for photosynthesis and the exchange of gases. [2] These layers are called the palisade parenchyma and spongy mesophyll. Palisade parenchyma cells can be either cuboidal or elongated.
Photoassimilate movement through plants from "source to sink" using xylem and phloem is of biological significance. This movement is mimicked by many infectious particles - namely viroids - to accomplish long ranged movement and consequently infection of an entire plant.