Search results
Results From The WOW.Com Content Network
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
A locally shortest path between two given points in a curved space, assumed [b] to be a Riemannian manifold, can be defined by using the equation for the length of a curve (a function f from an open interval of R to the space), and then minimizing this length between the points using the calculus of variations.
The shortest path between two intersections on a city map can be found by this algorithm using pencil and paper. Every intersection is listed on a separate line: one is the starting point and is labeled (given a distance of) 0.
Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing ...
In taxicab geometry, the distance between any two points equals the length of their shortest grid path. This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length.
A simple definition is as the shortest path between two points on a surface. However, it is frequently more useful to define them as paths with zero geodesic curvature—i.e., the analogue of straight lines on a curved surface. This definition encompasses geodesics traveling so far across the ellipsoid's surface that they start to return toward ...
Equivalent paths between A and B in a 2D environment. Pathfinding or pathing is the search, by a computer application, for the shortest route between two points. It is a more practical variant on solving mazes. This field of research is based heavily on Dijkstra's algorithm for finding the shortest path on a weighted graph.
In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path distance. [1] Notice that there may be more than one shortest path between two vertices. [2]