Search results
Results From The WOW.Com Content Network
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...
A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
The fact that the line integral depends on the path C only through its terminal points r 0 and r is, in essence, the path independence property of a conservative vector field. The fundamental theorem of line integrals implies that if V is defined in this way, then F = –∇V, so that V is a scalar potential of the conservative vector field F ...
A (continuous) gradient field is always a conservative vector field: its line integral along any path depends only on the endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem of calculus for line integrals). Conversely, a (continuous) conservative vector field is always the gradient of a function.
In 3 dimensions, an exact vector field (thought of as a 1-form) is called a conservative vector field, meaning that it is the derivative of a 0-form (smooth scalar field), called the scalar potential. A closed vector field (thought of as a 1-form) is one whose derivative vanishes, and is called an irrotational vector field.
In physics, a conservative force is a force with the property that the total work done by the force in moving a particle between two points is independent of the path taken. [1] Equivalently, if a particle travels in a closed loop, the total work done (the sum of the force acting along the path multiplied by the displacement ) by a conservative ...
[a] [1]: 93 = = | | ^ where is the force, F is a vector valued force function, F is a scalar valued force function, r is the position vector, ||r|| is its length, and ^ = / ‖ ‖ is the corresponding unit vector. Not all central force fields are conservative or spherically symmetric. However, a central force is conservative if and only if it ...