Search results
Results From The WOW.Com Content Network
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis , this may be the selection of a statistical model from a set of candidate models, given data.
Heckman also developed a two-step control function approach to estimate this model, [3] which avoids the computational burden of having to estimate both equations jointly, albeit at the cost of inefficiency. [4] Heckman received the Nobel Memorial Prize in Economic Sciences in 2000 for his work in this field. [5]
In efficient quantile regression, an EL-based categorization [9] procedure helps determine the shape of the true discrete distribution at level p, and also provides a way of formulating a consistent estimator. In addition, EL can be used in place of parametric likelihood to form model selection criteria. [10]
Van der Pas and Grünwald prove that model selection based on a modified Bayesian estimator, the so-called switch distribution, in many cases behaves asymptotically like HQC, while retaining the advantages of Bayesian methods such as the use of priors etc.
In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.
Minimum Description Length (MDL) is a model selection principle where the shortest description of the data is the best model. MDL methods learn through a data compression perspective and are sometimes described as mathematical applications of Occam's razor. The MDL principle can be extended to other forms of inductive inference and learning ...
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
Henry's [26] proposes an extended model-assisted weighting design-effect measure for single-stage sampling and calibration weight adjustments for a case where = + +, where is a vector of covariates, the model errors are independent, and the estimator of the population total is the general regression estimator (GREG) of Särndal, Swensson, and ...