Search results
Results From The WOW.Com Content Network
A polar molecule has a net dipole as a result of the opposing charges (i.e. having partial positive and partial negative charges) from polar bonds arranged asymmetrically. Water (H 2 O) is an example of a polar molecule since it has a slight positive charge on one side and a slight negative charge on the other. The dipoles do not cancel out ...
2) + 3). In organic chemistry, planar, three-connected carbon centers that are trigonal planar are often described as having sp 2 hybridization. [2] [3] Nitrogen inversion is the distortion of pyramidal amines through a transition state that is trigonal planar. Pyramidalization is a distortion of this molecular shape towards a tetrahedral ...
Molecular geometry influences several properties of a substance including its reactivity, polarity, phase of matter, color, magnetism and biological activity. [ 1 ] [ 2 ] [ 3 ] The angles between bonds that an atom forms depend only weakly on the rest of molecule, i.e. they can be understood as approximately local and hence transferable ...
Structure of cisplatin, an example of a molecule with the square planar coordination geometry. In chemistry, the square planar molecular geometry describes the stereochemistry (spatial arrangement of atoms) that is adopted by certain chemical compounds. As the name suggests, molecules of this geometry have their atoms positioned at the corners.
An example of a molecular species with square prismatic geometry (a slightly flattened cube) is octafluoroprotactinate(V), [PaF 8] 3–, as found in its sodium salt, Na 3 PaF 8. [6] While local cubic 8-coordination is common in ionic lattices (e.g., Ca 2+ in CaF 2 ), and some 8-coordinate actinide complexes are approximately cubic, there are no ...
Disphenoidal or seesaw (also known as sawhorse [1]) is a type of molecular geometry where there are four bonds to a central atom with overall C 2v molecular symmetry.The name "seesaw" comes from the observation that it looks like a playground seesaw.
Many solids, e.g. graphite, adopt low-dimensional structures, in which case the layers (2-D) or chains (1-D) should be shown. Some inorganic solids dissociate - or crack - into molecular species heating or upon dissolving, e.g. Aluminium chloride. In such cases it is helpful to depict both the molecular and the nonmolecular forms.
Structural chemistry is a part of chemistry and deals with spatial structures of molecules (in the gaseous, liquid or solid state) and solids (with extended structures that cannot be subdivided into molecules). For structure elucidation [1] a range of different methods is used.