Search results
Results From The WOW.Com Content Network
Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...
Nikolai Ivanovich Lobachevsky (Russian: Никола́й Ива́нович Лобаче́вский, IPA: [nʲɪkɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕefskʲɪj] ⓘ; 1 December [O.S. 20 November] 1792 – 24 February [O.S. 12 February] 1856) was a Russian mathematician and geometer, known primarily for his work on hyperbolic geometry, otherwise known as Lobachevskian geometry, and also for ...
Following Eugenio Beltrami's (1868) discussion of hyperbolic geometry, Escherich in 1874 published a paper named "The geometry on surfaces of constant negative curvature". He used coordinates initially introduced by Christoph Gudermann (1830) for spherical geometry, which were adapted by Escherich using hyperbolic functions.
János Bolyai (Hungarian: [ˈjaːnoʃ ˈboːjɒi]; 15 December 1802 – 27 January 1860) or Johann Bolyai, [2] was a Hungarian mathematician who developed absolute geometry—a geometry that includes both Euclidean geometry and hyperbolic geometry. The discovery of a consistent alternative geometry that might correspond to the structure of the ...
Nikolai Ivanovich Lobachevsky (1792–1856) – hyperbolic geometry, a non-Euclidean geometry Michel Chasles (1793–1880) – projective geometry Germinal Dandelin (1794–1847) – Dandelin spheres in conic sections
1829 – Bolyai, Gauss, and Lobachevsky invent hyperbolic non-Euclidean geometry, 1837 – Pierre Wantzel proves that doubling the cube and trisecting the angle are impossible with only a compass and straightedge, as well as the full completion of the problem of constructibility of regular polygons
In the axiomatic approach to hyperbolic geometry (also referred to as Lobachevskian geometry or Bolyai–Lobachevskian geometry), one additional axiom is added to the axioms giving absolute geometry. The new axiom is Lobachevsky's parallel postulate (also known as the characteristic postulate of hyperbolic geometry ): [ 75 ]
Hungarian mathematics began its rise to prominence in the early 1800s with János Bolyai, one of the creators of non-Euclidean geometry, and his father Farkas Bolyai. Though they were largely ignored during their lifetimes, János Bolyai's groundbreaking work on hyperbolic geometry would later be recognized as foundational to modern mathematics.