When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    k = 1 is the tangent line to the right of the circles looking from c 1 to c 2. k = −1 is the tangent line to the right of the circles looking from c 2 to c 1. The above assumes each circle has positive radius. If r 1 is positive and r 2 negative then c 1 will lie to the left of each line and c 2 to the right, and the two tangent lines will ...

  3. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The tangent line to the unit circle at the point A, is perpendicular to , and intersects the y - and x-axes at points = (,) and = (,). The coordinates of these points give the values of all trigonometric functions for any arbitrary real value of θ in the following manner.

  4. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.

  5. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    The graph of (,) is changed by ... For example, + = is the relation that describes the unit circle. Finding intersections of geometric objects ... the tangent line ...

  6. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    The tangent line to a given point (,) on the hyperbola is defined by the equation + + = where ,, and are ... The graph of the equation = / ... In a unit circle, ...

  7. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans (Latin for "kissing circle") by Leibniz. The center and radius of the osculating circle at a given point are called center of curvature and radius of curvature of the curve at that point.

  8. Circle packing theorem - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_theorem

    The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects ...

  9. Cardioid - Wikipedia

    en.wikipedia.org/wiki/Cardioid

    A detailed consideration shows: The midpoints of the circles lie on the perimeter of the fixed generator circle. (The generator circle is the inverse curve of the parabola's directrix.) This property gives rise to the following simple method to draw a cardioid: Choose a circle and a point on its perimeter,