Ads
related to: end fed long wire antennas for ham radio full wave for sale
Search results
Results From The WOW.Com Content Network
Often random wire antennas are also (inaccurately) referred to as long-wire antennas.There is no accepted minimum size, but actual long-wire antennas must be greater than at least a quarter-wavelength ( 1 / 4 λ) or perhaps greater than a half ( 1 / 2 λ) at the frequency the long wire antenna is used for, and even a half-wave may only be considered "long-ish" rather than "truly ...
Traveling wave antennas are notably one of the few types of antennas that are normally not self resonant: Electrical waves induced by received radio waves travel through the antenna wire in the direction that the arriving RF signals are travelling. Only electrical waves traveling toward the feedpoint are collected; waves traveling away from the ...
Tests done by J.S. Belrose (1994) [7] showed that though the conventional T²FD length is close to a full-size 80 meter (3.5–4.0 MHz) antenna, the antenna starts to suffer serious signal loss both on transmit and receive below 10 MHz (30 m), with the 80 meter band signals −10 dB down (90% power loss) from a reference dipole at 10 MHz.
Louis Varney (G5RV) invented this antenna in 1946. [4] It is very popular in the United States. [5] The antenna can be erected as horizontal dipole, as sloper, or an inverted-V antenna. With a transmatch, (antenna tuner) it can operate on all HF amateur radio bands (3.5–30 MHz). [5] [6]
The angle of the slope is usually between 45°–60° and the lower end of the wire is at least 1 ⁄ 6 wavelength above the electrical ground. [3] A sloper is typically fed with a coaxial cable in the center, at the top of the center support mast. At least 1 ⁄ 4 of the wavelength of feedline must be at 90° angle to the antenna. [3]
The J-pole antenna is an end-fed omnidirectional half-wave antenna that is matched to the feedline by a shorted quarter-wave parallel transmission line stub. [5] [1] [6] For a transmitting antenna to operate efficiently, absorbing all the power provided by its feedline, the antenna must be impedance matched to the line; it must have a resistance equal to the feedline's characteristic impedance.