Search results
Results From The WOW.Com Content Network
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are ...
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Here are time complexities [5] of various heap data structures. The abbreviation am. indicates that the given complexity is amortized, otherwise it is a worst-case complexity. For the meaning of "O(f)" and "Θ(f)" see Big O notation. Names of operations assume a max-heap.
A random sample can be thought of as a set of objects that are chosen randomly. More formally, it is "a sequence of independent, identically distributed (IID) random data points." In other words, the terms random sample and IID are synonymous. In statistics, "random sample" is the typical terminology, but in probability, it is more common to ...
These approaches combine a pseudo-random number generator (often in the form of a block or stream cipher) with an external source of randomness (e.g., mouse movements, delay between keyboard presses etc.). /dev/random – Unix-like systems; CryptGenRandom – Microsoft Windows; Fortuna
With keys having low entropy (i.e., relatively easily guessable by attackers), security is likely to be compromised. To illustrate, imagine if a simple 32 bit linear congruential pseudo-random number generator of the type supplied with most programming languages (e.g., as the 'rand' or 'rnd' function) is used as a source of keys.
The first tests for random numbers were published by M.G. Kendall and Bernard Babington Smith in the Journal of the Royal Statistical Society in 1938. [2] They were built on statistical tools such as Pearson's chi-squared test that were developed to distinguish whether experimental phenomena matched their theoretical probabilities.
The random matrix R can be generated using a Gaussian distribution. The first row is a random unit vector uniformly chosen from . The second row is a random unit vector from the space orthogonal to the first row, the third row is a random unit vector from the space orthogonal to the first two rows, and so on.