When.com Web Search

  1. Ads

    related to: data science with generative ai course by linkedin learning quiz test

Search results

  1. Results From The WOW.Com Content Network
  2. Generative artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Generative_artificial...

    Generative artificial intelligence (generative AI, GenAI, [1] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [ 2 ] [ 3 ] [ 4 ] These models learn the underlying patterns and structures of their training data and use them to produce new data [ 5 ] [ 6 ] based on ...

  3. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    Analogously, a classifier based on a generative model is a generative classifier, while a classifier based on a discriminative model is a discriminative classifier, though this term also refers to classifiers that are not based on a model. Standard examples of each, all of which are linear classifiers, are: generative classifiers:

  4. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  5. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    Prompt engineering is the process of structuring or crafting an instruction in order to produce the best possible output from a generative artificial intelligence (AI) model. [ 1 ] A prompt is natural language text describing the task that an AI should perform. [ 2 ]

  6. Diffusion model - Wikipedia

    en.wikipedia.org/wiki/Diffusion_model

    In machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable generative models. A diffusion model consists of three major components: the forward process, the reverse process, and the sampling procedure. [ 1 ]

  7. Text-to-image model - Wikipedia

    en.wikipedia.org/wiki/Text-to-image_model

    An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.