Search results
Results From The WOW.Com Content Network
A plot of the smoothstep(x) and smootherstep(x) functions, using 0 as the left edge and 1 as the right edgeSmoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning.
Simpler modules like Linear, Tanh and Max make up the basic component modules. This modular interface provides first-order automatic gradient differentiation. What follows is an example use-case for building a multilayer perceptron using Modules: >
Y is the 1-hot maximizer of the linear Decoder layer D; that is, it takes the argmax of D's linear layer output. x 300-long word embedding vector. The vectors are usually pre-calculated from other projects such as GloVe or Word2Vec. h 500-long encoder hidden vector. At each point in time, this vector summarizes all the preceding words before it.
Multi-head attention enhances this process by introducing multiple parallel attention heads. Each attention head learns different linear projections of the Q, K, and V matrices. This allows the model to capture different aspects of the relationships between words in the sequence simultaneously, rather than focusing on a single aspect.
The un-embedding layer is a linear-softmax layer: = (+) The matrix has shape (,). The embedding matrix M {\displaystyle M} and the un-embedding matrix W {\displaystyle W} are sometimes required to be transposes of each other, a practice called weight tying.
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.
PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch, a popular deep learning framework. [1] It is a lightweight and high-performance framework that organizes PyTorch code to decouple research from engineering, thus making deep learning experiments easier to read and reproduce.
The first layer in this block is a 1x1 convolution for dimension reduction (e.g., to 1/2 of the input dimension); the second layer performs a 3x3 convolution; the last layer is another 1x1 convolution for dimension restoration. The models of ResNet-50, ResNet-101, and ResNet-152 are all based on bottleneck blocks. [1]